Problem 1.38

You lay a rectangular board on the horizontal floor and then tilt the board about one edge until it slopes at angle θ with the horizontal. Choose your origin at one of the two corners that touch the floor, the x axis pointing along the bottom edge of the board, the y axis pointing up the slope, and the z axis normal to the board. You now kick a frictionless puck that is resting at O so that it slides across the board with initial velocity ($v_{\mathrm{o} x}, v_{\mathrm{o} y}, 0$). Write down Newton's second law using the given coordinates and then find how long the puck takes to return to the floor level and how far it is from O when it does so.

Solution

Start by drawing the free-body diagram for the puck. Note that because the puck is frictionless, there's only the force of gravity acting on it.

W_{y} and W_{z} are the components (their magnitudes, rather) of the weight vector along the y - and z-axes, respectively. There is no x-component because the x-axis is perpendicular to the direction of gravity.

$$
\begin{aligned}
W_{y} & =m g \sin \theta \\
W_{z} & =m g \cos \theta
\end{aligned}
$$

According to Newton's second law, the sum of the forces acting on the puck is equal to its mass times acceleration.

$$
\sum \mathbf{F}=m \mathbf{a} \Rightarrow\left\{\begin{array}{l}
\sum F_{x}=m a_{x} \\
\sum F_{y}=m a_{y} \\
\sum F_{z}=m a_{z}
\end{array}\right.
$$

The puck stays in the $x y$-plane, so the sum of the forces in the z-direction is zero. Also, \mathbf{W}_{y} points in the negative y-direction, so there's a minus sign on the left side of the y-equation.

$$
\left\{\begin{aligned}
0 & =m a_{x} \\
-m g \sin \theta & =m a_{y} \\
0 & =m a_{z}
\end{aligned}\right.
$$

Divide both sides of each equation by m.

$$
\left\{\begin{aligned}
0 & =a_{x} \\
-g \sin \theta & =a_{y} \\
0 & =a_{z}
\end{aligned}\right.
$$

Acceleration is the second derivative of position.

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}=0 \\
\frac{d^{2} y}{d t^{2}}=-g \sin \theta \\
\frac{d^{2} z}{d t^{2}}=0
\end{array}\right.
$$

Integrate both sides of each equation with respect to t to get the components of the puck's velocity.

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=C_{1} \tag{1}\\
\frac{d y}{d t}=-g t \sin \theta+C_{2} \\
\frac{d z}{d t}=C_{3}
\end{array}\right.
$$

Use the puck's initial velocity vector $\mathbf{v}_{\mathrm{o}}=\left\langle v_{\mathrm{o} x}, v_{\mathrm{o} y}, 0\right\rangle$ to determine C_{1}, C_{2}, and C_{3}.

$$
\begin{array}{lll}
\frac{d x}{d t}(0)=C_{1}=v_{\mathrm{o} x} & \rightarrow & C_{1}=v_{\mathrm{o} x} \\
\frac{d y}{d t}(0)=-g(0) \sin \theta+C_{2}=v_{\mathrm{o} y} & \rightarrow & C_{2}=v_{\mathrm{o} y} \\
\frac{d z}{d t}(0)=C_{3}=0 & \rightarrow & C_{3}=0
\end{array}
$$

As a result, equation (1) becomes

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=v_{\mathrm{o} x} \\
\frac{d y}{d t}=-g t \sin \theta+v_{\mathrm{o} y} \\
\frac{d z}{d t}=0
\end{array}\right.
$$

Integrate both sides of each equation with respect to t once more to get the components of the puck's position.

$$
\left\{\begin{array}{l}
x(t)=v_{\mathrm{ox}} t+C_{4} \tag{2}\\
y(t)=-\frac{g t^{2}}{2} \sin \theta+v_{\mathrm{o} y} t+C_{5} \\
z(t)=C_{6}
\end{array}\right.
$$

Use the fact that the puck starts from the origin $(x=0, y=0$, and $z=0$ when $t=0)$ to determine C_{4}, C_{5}, and C_{6}.

$$
\begin{array}{lll}
x(0)=v_{\mathrm{o} x}(0)+C_{4}=0 & \rightarrow & C_{4}=0 \\
y(0)=-\frac{g(0)^{2}}{2} \sin \theta+v_{\mathrm{o} y}(0)+C_{5}=0 & \rightarrow & C_{5}=0 \\
z(0)=C_{6}=0 & \rightarrow & C_{6}=0
\end{array}
$$

Consequently, equation (2) becomes

$$
\left\{\begin{array}{l}
x(t)=v_{\mathrm{o} x} t \\
y(t)=-\frac{g t^{2}}{2} \sin \theta+v_{\mathrm{o} y} t \\
z(t)=0
\end{array}\right.
$$

Therefore, the puck's position is

$$
\mathbf{r}(t)=\left\langle v_{\mathrm{o} x} t,-\frac{g t^{2}}{2} \sin \theta+v_{\mathrm{o} y} t, 0\right\rangle .
$$

To find how long it takes for the puck to return to the floor level, set $y(t)=0$ and solve for nonzero t.

$$
\begin{gathered}
-\frac{g t^{2}}{2} \sin \theta+v_{\mathrm{o} y} t=0 \\
t\left(-\frac{g t}{2} \sin \theta+v_{\mathrm{o} y}\right)=0 \\
t=0 \quad \text { or } \quad-\frac{g t}{2} \sin \theta+v_{\mathrm{o} y}=0 \\
t=0 \quad \text { or } \quad t=\frac{2 v_{\mathrm{o} y}}{g \sin \theta}
\end{gathered}
$$

To find how far the puck is from O when it returns to the floor, plug this time into $x(t)$.

$$
x\left(\frac{2 v_{\mathrm{o} y}}{g \sin \theta}\right)=v_{\mathrm{o} x}\left(\frac{2 v_{\mathrm{o} y}}{g \sin \theta}\right)=\frac{2 v_{\mathrm{o} x} v_{\mathrm{o} y}}{g \sin \theta}
$$

